Changes to EMMA Lattice Specification Since the January Review

J. Scott Berg
Brookhaven National Laboratory
EMMA Design Review
26 February 2007

- At January review: each magnet and cavity had different axis orientation
- Suggestion at that meeting: make magnets parallel
 - ◆ Result: little increase in apertures
 - Note that F axis nearly parallel to cavity axis
- Next, made cavity axis parallel to magnet axes
 - Result: again, little increase in aperture
 - This is now the layout we're using

Updates to Analysis

- Frequency of cavities can be set to any energy within acceleration range (commissioning)
 - Wider frequency range required
 - Reduced maximum energy that time of flight minimum would be raised to
 - * Reduces frequency range required
 - * Reduces aperture as well
- Cavity shortened to 105 mm (from 175 mm)
 - With current shifted and longer cavity, somewhat pessimistic
- Take into account closed orbit jump at magnet ends
 - Due to hard edge model, but effect is real (but smoother!)
 - Magnet aperture must be increased to this size (D only)
- Minor bugfix in end field handling (effect negligible)

Time of Flight Different Locations for Minimum

Horizontal Beam Footprint

Beam Trajectory due to End Fields

Making Cavity, Magnets Parallel Geometry

- Coordinate reference length about the same
- Redistribution of lengths ("magnets" longer) and angles
- Orbits do what they will: this is just the coordinate system!

Before	After	
061213a	070221b	
210.000	210.000	
-32.867	0.000	
58.221	58.782	
-32.867	0.000	
107.666	0.000	
55.452	50.000	
70.921	75.699	
107.666	149.600	
	061213a 210.000 -32.867 58.221 -32.867 107.666 55.452 70.921	061213a 070221b 210.000 210.000 -32.867 0.000 58.221 58.782 -32.867 0.000 107.666 0.000 55.452 50.000 70.921 75.699

Making Cavity, Magnets Parallel Apertures and Gradients

- Aperture, gradient requirements haven't changed much
 - D quad better, frequency range larger (sort of)

	Before	After
	061213[ac-i]	070221[b-i]
Cavity full aperture (mm)	38.429×22.256	34.751×21.142
D pipe full aperture (mm)	24.327×23.444	26.205×23.353
F pipe full aperture (mm)	41.955×17.747	42.338×17.813
D quad max (mm)	60.120	55.975
F quad max (mm)	32.166	31.850
D gradient max (T/m)	-5.041	-4.843
F gradient max (T/m)	6.799	6.847
Frequency range (kHz)	3966 (6489)	5574
Ring voltage for $a = 1/6$ (kV)	2220	2286

- Sequence is long drift, F quad, short drift, D quad
- Placing BPM near D quad requires wider pipe aperture
 - Looks like it would require around 3 mm extra width (BPM extends out around 1.8 cm)
 - Not in the above tables

Horizontal Beam Footprint

BPM Close to D Quad

Magnet Lengths

- I am basing analysis on rectangular field profile with lengths specified earlier
- Apertures computed based on this
- Current magnet lengths are a bit arbitrary
 - Probably not important, just an observation...
 - Lengths shorter than what I give, so D aperture is better in real life
- Things will be rather different anyhow when we have real magnet field profiles

Dispersion Size

- The things you discover as you're writing talks...
- Energy spread in beam gives it a width
- Already accounted for when within the energy range (10–20 MeV)
- However, what about lower energies at injection, higher energies at extraction?
- Guess: 10% energy spread at injection, 5% at extraction

Dispersion

Dispersion Size Increase in Apertures

- Dispersion very small at injection
 - ◆ Plus, it's negative in the D and most of long drift
 - Pushes cavity and F aperture a fraction of a mm
- Dispersion larger at injection
 - Not a big issue for magnets: just widen vacuum chamber
 - ◆ Cavity aperture: 3–4 mm
- Reduce acceleration range for testing large longitudinal emittance?

Converting to FODO Lattice

- Use high-horizontal, low-vertical tune lattice to minimize aperture
- Use the F magnets
 - ◆ Displacements are 99 mm, -39 mm (normally 5–10 mm)
 - Lower gradients, but just as much dipole
 - ◆ Cavity aperture: 82 mm (around 35 mm nominally)
 - All other numbers huge
- Similar results when you use the D quads
- Reducing energy range by factor of 2
 - Cavity aperture down to 46 mm
 - Displacements still large

- Detailed lattice specifications available at
- http://www.conform.ac.uk/documents/emma/acc%20-%20accelerator%20physics/lattice.html
 - Front page has geometry and parameters that encompass all configurations
 - Individual configuration parameters linked from that page
 - There's a data file containing tunes, times of flight, and orbit position at long drift center
 - A subdirectory contains the output files from my design optimization

